Ye Bi 毕晔

Deep LearningComputer VisionGeneticsData Science

ye_magic.jpeg

I am a Postdoctoral Research Associate from Dr. Juan Pedro Steibel’s group in the Department of Animal Science at Iowa State University.

I earned my Ph.D. under the mentorship of Dr. Gota Morota in the School of Animal Science at Virginia Polytechnic Institute and State University.

My research interests focus on incorporating artificial intelligence, computer vision, statistics, phenomics, and genetics to study animal and plant sciences.

Happy Fall! 🌷🌸🌿🌞🐦🌼🌻🐝🦋.
Feel free to reach out 📩

Research Topics

        ✓ Precision Livestock Farming 🐷🐽🐄🐖
        ✓ Quantitative Genetics for animals 🐄🐂
        ✓ Quantitative Genetics for plants 🌿🌾

Recent News
(See All)

Aug 12, 2025 [New Paper Accepted] Ye Bi, Yijian Huang, Jianhua Xuan, and Gota Morota. Industry-scale prediction of video-derived pig body weight using efficient convolutional neural networks and vision transformers. Biosystems Engineering 257 (2025): 104243. doi:10.1016/j.biosystemseng.2025.104243 isu_ans
Jul 6, 2025 [Oral presentation] Glad to give one oral presentation in ASAS2025!! Automated segmentation and tracking of group housed pigs using zero-shot vision-language tools. 2025 ASAS-CSAS Annual Meeting. Hollywood, Florida. July 6-10. 2025. pag32
Jun 6, 2025 [New Preprint] Ye Bi, Yijian Huang, Haipeng Yu, and Gota Morota. "Impact of trait measurement error on quantitative genetic analysis of computer vision derived traits." bioRxiv (2025): 2025-06. doi:10.1101/2025.06.02.657462.


tme
Mar 21, 2025 [New Paper Accepted] Liao, Mingsi, Gota Morota, Ye Bi, and Rebecca R. Cockrum. "PredictingDairy Calf Body Weight from Depth Images Using Deep Learning (YOLOv8) and Threshold Segmentation with Cross-Validation and Longitudinal Analysis." Animals 15, no. 6 (2025): 868. doi:10.3390/ani15060868


animals

Selected Publications
(Show More)

Check out Google Scholar for a full list of my publications.

  1. Industry-scale prediction of video-derived pig body weight using efficient convolutional neural networks and vision transformers
    Ye Bi, Yijian Huang, Jianhua Xuan, and Gota Morota
    Biosystems Engineering 2025
  2. Impact of trait measurement error on quantitative genetic analysis of computer vision derived traits
    Ye Bi, Yijian Huang, Haipeng Yu, and Gota Morota
    bioRxiv 2025
  3. PredictingDairy Calf Body Weight from Depth Images Using Deep Learning (YOLOv8) and Threshold Segmentation with Cross-Validation and Longitudinal Analysis
    Mingsi Liao, Gota Morota, Ye Bi, and Rebecca R Cockrum
    Animals 2025
  4. Dissertation
    Digital Phenotyping and Genomic Prediction Using Machine and Deep Learning in Animals and Plants
    Ye Bi
    2024
  5. Genomic prediction of metabolic content in rice grain in response to warmer night conditions
    Ye Bi, Harkamal Walia, Toshihiro Obata, and Gota Morota
    Crop Science 2025
  6. Depth video data-enabled predictions of longitudinal dairy cow body weight using thresholding and Mask R-CNN algorithms
    Ye Bi, Leticia M. Campos, Jin Wang, Haipeng Yu, Mark D. Hanigan, and Gota Morota
    Smart Agricultural Technology 2023
  7. Evaluating metabolic and genomic data for predicting grain traits under high night temperature stress in rice
    Ye Bi, Rafael Massahiro Yassue, Puneet Paul, Balpreet Kaur Dhatt, Jaspreet Sandhu, Thi Phuc Do, Harkamal Walia, Toshihiro Obata, and Gota Morota
    G3: Genes, Genomes, Genetics 2023